MECHANICAL ENGINEERINGDEPARTMENT

Rectangular components are convenient for finding the sum or resultant \mathbf{R} of two forces are concurrent. Consider two forces \mathbf{F}_{1} and $\mathbf{F}_{\mathbf{2}}$ which are originally concurrent at a point O. Figure $2 / 7$ shows the line of action of \mathbf{F}_{2} shifted from O to the tip of \boldsymbol{F}_{1} according to the triangle rule of Fig. 2/3. In adding the force vectors \mathbf{F}_{1} and \mathbf{F}_{2}, we may write:

$$
R=F_{1}+F_{2}=\left(F_{1} \mathbf{i}+F_{1} \mathbf{j}\right)+\left(F_{2} \mathbf{i}+F_{2} \mathbf{j}\right)
$$

Or

$$
\left.\begin{array}{l}
R_{x} i+R_{y} j=\left(F_{1_{x}}+F_{2_{x}}\right) i+\left(F_{1_{y}}+F_{2_{y}}\right) j \\
R_{x}=\left(F_{1_{x}}+F_{2_{x}}\right)=F_{x} \tag{2/4}\\
R_{y}=\left(F_{1_{y}}+F_{2_{y}}\right)=F_{y}
\end{array}\right\}
$$

SAMPLE PROBLE 2/1

The forces $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3}, all of which act on point A of the bracket, are specified in three different ways. Determine the x and y scalar components of each of the three forces.

Solution

The scalar components of $\mathbf{F}_{\mathbf{1}}$, from Fig. a, are

$$
\begin{aligned}
& \boldsymbol{F}_{1_{x}}=600 \cos 35^{\circ}=491 \mathrm{~N} \\
& \boldsymbol{F}_{1_{y}}=600 \sin 35^{\circ}=344 \mathrm{~N}
\end{aligned}
$$

The scalar components of $\mathbf{F}_{\mathbf{2}}$, from Fig. b, are

$$
\begin{aligned}
& \boldsymbol{F}_{1_{x}}=-500\left(\frac{4}{5}\right)=-400 \mathrm{~N} \\
& \boldsymbol{F}_{1_{x}}=500\left(\frac{3}{5}\right)=300 \mathrm{~N}
\end{aligned}
$$

Note that the angle which orients \mathbf{F}_{2} to the x-axis is never calculated. The cosine and sine of the angle are available by inspection of the 3-4-5 triangle. Also note that the x scalar component of $\boldsymbol{F}_{\mathbf{2}}$ is negative by inspection.

Figure 2/7

UNIVERSITYOFBASRAH COLLEGEOF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

The scalar components of \mathbf{F}_{3} can be obtained by first computing the angle α of Fig. c.

$$
\alpha=\tan ^{-1}(0.2 / 0.4)=26.6^{\circ}
$$

1 Then $\quad \boldsymbol{F}_{3_{x}}=F_{3} \sin \alpha=800 \sin 26.6^{\circ}=358 \mathrm{~N}$

$$
\boldsymbol{F}_{3_{y}}=-F_{3} \cos \alpha=-800 \cos 26.6^{\circ}=-716 N
$$

Alternatively, the scalar components of \mathbf{F}_{3} can be obtained by writing \mathbf{F}_{3} as a magnitude times a unit vector \mathbf{n}_{AB} in the direction of the line segment $A B$ Thus,

2

$$
\mathbf{F}_{3}=F_{3} \mathbf{n}_{A B}=F_{3} \frac{\overrightarrow{A B}}{A B}=800\left[\frac{0.2 i-0.4 j}{\sqrt{(0.2)^{2}+(0.4)^{2}}}\right]
$$

$$
=800[0.447 i-0.894 j]=358 i-716 j
$$

The required scalar components are then $\boldsymbol{F}_{3_{x}}=358 \mathrm{~N}, \boldsymbol{F}_{3_{y}}=-716 \mathrm{~N}$ which agree with our previous results.

Helpful Hints

2 You should carefully examine the geometry of each component determination problem and nor rely on the blind use of such formulas as

$$
F_{x}=F \cos \theta \text { and } F_{y}=F \sin \theta
$$

2 A unit vector can be formed by dividing any vector, such as the geometric position vector
2 ,by its length or magnitude. Here we use the over arrow to denote the vector which runs from A to B and the over bar to determine the distance between A and B.

SAMPLE PROBLEM 2/2

Combine the two forces P and T, which act on the fixed structure at B , into a single equivalent force R .

(a)

(b)

(c)

1 Graphical solution: The parallelogram for the vector addition of forces \mathbf{T} and \mathbf{P} is constructed as shown in Fig. \boldsymbol{a}. The scale used here is 1 in .800 lb ; a scale of 1 in .200 lb would be more suitable for regular-size paper and would give greater accuracy. Note that the angle α must be determined prior to construction of the parallelogram. From the given figure

$$
\tan =\frac{\overrightarrow{B D}}{A B}=\frac{6 \sin 60^{\circ}}{3+6 \cos 60^{\circ}}=0.866 \quad \alpha=40.9^{\circ}
$$

Measurement of the length R and direction θ of the resultant force \mathbf{R} yields the approximate results $R=525 \mathrm{lb} \quad \theta=49^{\circ}$
2. Geometric solution: The triangle for the vector addition of \mathbf{T} and \mathbf{P} is shown in Fig. b. The angle α is calculated as above. The law of cosines gives

$$
R^{2}=(600)^{2}+(800)^{2}-2(600)(800) \cos 40.9^{\circ}=274300 \quad \therefore R=524 \mathrm{lb}
$$

3
Algebraic solution : By using the $x-y$ coordinate system on the given figure, we may write

$$
\begin{aligned}
& R_{x}=\sum F_{x}=800-600 \cos 40.9=346 \mathrm{lb} \\
& R_{y}=\sum F_{y}=-600 \sin 40.9=-393 \mathrm{lb}
\end{aligned}
$$

The magnitude and direction of the resultant force \mathbf{R} as shown in Fig. \boldsymbol{c} are then
$F=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{(346)^{2}+(-393)^{2}}=524 l b$
$\theta=\tan ^{-1}\left|\frac{F_{y}}{F_{x}}\right|=\tan ^{-1}\left(\frac{393}{346}\right)=48.6^{\circ}$
The resultant \mathbf{R} may also be written in vector notation as

$$
\mathrm{R}=R_{x} \boldsymbol{i}+R_{y} \boldsymbol{j}=346 \boldsymbol{i}-393 \boldsymbol{j} \boldsymbol{l} \boldsymbol{b}
$$

