

University Of Basrah COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

Rectangular components are convenient for finding the sum or resultant **R** of two forces are concurrent. Consider two forces \mathbf{F}_1 and \mathbf{F}_2 which are originally concurrent at a point *O*. *Figure* 2/7 shows the line of action of \mathbf{F}_2 shifted from *O* to the tip of \mathbf{F}_1 according to the triangle rule of Fig. 2/3. In adding the force vectors \mathbf{F}_1 and \mathbf{F}_2 , we may write:

$$\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 = (\mathbf{F}_1 \mathbf{i} + \mathbf{F}_1 \mathbf{j}) + (\mathbf{F}_2 \mathbf{i} + \mathbf{F}_2 \mathbf{j})$$

Or

$$R_{x}i + R_{y}j = (F_{1_{x}} + F_{2_{x}})i + (F_{1_{y}} + F_{2_{y}})j$$

$$R_{x} = (F_{1_{x}} + F_{2_{x}}) = F_{x}$$

$$R_{y} = (F_{1_{y}} + F_{2_{y}}) = F_{y}$$

$$(2/4)$$

SAMPLE PROBLE 2/1

The forces \mathbf{F}_1 , \mathbf{F}_2 , and \mathbf{F}_3 , all of which act on point *A* of the bracket, are specified in three different ways. Determine the *x* and *y* scalar components of each of the three forces.

Solution

The scalar components of \mathbf{F}_1 , from Fig. *a*, are $F_{1_x} = 600 \cos 35^\circ = 491 N$ $F_{1_y} = 600 \sin 35^\circ = 344 N$

The scalar components of F_2 , from Fig. *b*, are

$$F_{1_x} = -500 \left(\frac{4}{5}\right) = -400 N$$

$$F_{1_x} = 500 \left(\frac{3}{5}\right) = 300 N$$

Note that the angle which orients \mathbf{F}_2 to the *x*-axis is never calculated. The cosine and sine of the angle are available by inspection of the 3-4-5 triangle. Also note that the x scalar component of \mathbf{F}_2 is negative by inspection.

University Of Basrah COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

The scalar components of \mathbf{F}_3 can be obtained by first computing the angle α of Fig. c.

 $\alpha = tan^{-1}(0.2/0.4) = 26.6^{\circ}$ Then $F_{3_x} = F_3 \sin \alpha = 800 \sin 26.6^{\circ} = 358 N$ $F_{3_y} = -F_3 \cos \alpha = -800 \cos 26.6^{\circ} = -716 N$

Alternatively, the scalar components of \mathbf{F}_3 can be obtained by writing \mathbf{F}_3 as a magnitude times a unit vector \mathbf{n}_{AB} in the direction of the line segment *AB* Thus,

F₃ = F₃**n**_{AB} = F₃
$$\frac{\overline{AB}}{AB}$$
 = 800 $\left[\frac{0.2i - 0.4j}{\sqrt{(0.2)^2 + (0.4)^2}}\right]$
= 800[0.447*i* - 0.894*j*] = 358*i* - 716*j*

The required scalar components are then $F_{3x} = 358 N$, $F_{3y} = -716 N$ which agree with our previous results.

<u>Helpful Hints</u>

You should carefully examine the geometry of each component determination problem and not rely on the blind use of such formulas as

 $F_x = F \cos\theta$ and $F_y = F \sin\theta$

A unit vector can be formed by dividing any vector, such as the geometric position vector A^2 , by its length or magnitude. Here we use the over arrow to denote the vector which runs from A to B and the over bar to determine the distance between A and B.

SAMPLE PROBLEM 2/2

Combine the two forces P and T, which act on the fixed structure at B, into a single equivalent force R.

BY Assist. Professor DR ABDUL KAREEM F. HASSAN

University Of Basrah COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

Graphical solution: The parallelogram for the vector addition of forces **T** and **P** is constructed as shown in Fig. *a*. The scale used here is 1 in. 800 lb; a scale of 1 in. 200 lb would be more suitable for regular-size paper and would give greater accuracy. Note that the angle α must be determined prior to construction of the parallelogram. From the given figure

 $tan = \frac{\overline{BD}}{AB} = \frac{6 \sin 60^{\circ}}{3 + 6 \cos 60^{\circ}} = 0.866 \qquad \alpha = 40.9^{\circ}$

Measurement of the length *R* and direction θ of the resultant force **R** yields the approximate results R = 525 lb $\theta = 49^{\circ}$

Geometric solution: The triangle for the vector addition of **T** and **P** is shown in Fig. b. The angle α is calculated as above. The law of cosines gives $R^{2} = (600)^{2} + (800)^{2} - 2(600)(800)\cos 40.9^{\circ} = 274300 \qquad \therefore R = 524 \ lb$

Algebraic solution : By using the x-y coordinate system on the given figure, we may write

 $R_x = \sum F_x = 800 - 600\cos 40.9 = 346$ lb $R_y = \sum F_y = -600\sin 40.9 = -393$ lb

The magnitude and direction of the resultant force \mathbf{R} as shown in Fig. c are then

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(346)^2 + (-393)^2} = 524 \ lb$$

$$\theta = tan^{-1} \left| \frac{F_y}{F_x} \right| = tan^{-1} \left(\frac{393}{346} \right) = 48.6^\circ$$

The resultant **R** may also be written in vector notation as

$$\mathbf{R} = R_x \mathbf{i} + R_y \mathbf{j} = \mathbf{346i} - \mathbf{393j} \, \mathbf{lb}$$